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Abstract

Carbon emissions from drained peatlands converted to agriculture in South‐East Asia
(i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing.

Here, we map the growth of South‐East Asian peatland agriculture and estimate

CO2 emissions due to peat drainage in relation to official land‐use plans with a focus

on the reducing emissions from deforestation and degradation (REDD+)‐related
Indonesian moratorium on granting new concession licences for industrial agriculture

and logging. We find that, prior to 2010, 35% of South‐East Asian peatlands had

been converted to agriculture, principally by smallholder farmers (15% of original

peat extent) and industrial oil palm plantations (14%). These conversions resulted in

1.46–6.43 GtCO2 of emissions between 1990 and 2010. This legacy of historical

clearances on deep‐peat areas will contribute 51% (4.43–11.45 GtCO2) of projected

future peatland CO2 emissions over the period 2010–2130. In Indonesia, which

hosts most of the region's peatland and where concession maps are publicly avail-

able, 70% of peatland conversion to agriculture occurred outside of known conces-

sions for industrial plantation development, with smallholders accounting for 60%

and industrial oil palm accounting for 34%. Of the remaining Indonesian peat swamp

forest (PSF), 45% is not protected, and its conversion would amount to CO2 emis-

sions equivalent to 0.7%–2.3% (5.14–14.93 Gt) of global fossil fuel and cement

emissions released between 1990 and 2010. Of the peatland extent included in the

moratorium, 48% was no longer forested, and of the PSF included, 40%–48% is

likely to be affected by drainage impacts from agricultural areas and will emit CO2

over time. We suggest that recent legislation and policy in Indonesia could provide

a means of meaningful emission reductions if focused on revised land‐use planning,

PSF conservation both inside and outside agricultural concessions, and the develop-

ment of agricultural practices based on rehabilitating peatland hydrological function.
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1 | INTRODUCTION

Peat swamp forests (PSFs), the natural vegetation cover found on

peatlands in Peninsula Malaysia, Southern Thailand, Sumatra, and

Borneo (hereafter South‐East Asia), once covered 21% of the region.

However, large swathes have been cleared for agriculture, leading to

widespread wildfires, species extinction, and globally significant
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carbon emissions (Chisholm, Wijedasa, & Swinfield, 2016; Hooijer et

al., 2010; Moore et al., 2013; Page, Siegert, Rieley, & Boehm, 2002;

Posa, Wijedasa, & Corlett, 2011; Turetsky et al., 2015; van der Werf

et al., 2009; Wijedasa, Posa, & Clements, 2015). Fires used to con-

vert PSF to agriculture have exposed millions of people to prolonged

haze and caused multibillion dollar losses (Chisholm et al., 2016;

Field et al., 2016; Gaveau et al., 2014). Regional inventories of peat-

land land‐use change have documented increasing contributions to

conversion of 20% to 50% by industrial plantations (i.e., large‐scale
plantations of oil palm, Acacia, or other industrial species) and small‐
scale agriculture (hereafter smallholders) (Miettinen & Liew, 2010a;

Miettinen, Shi, & Liew, 2016; Miettinen, Hooijer, Shi et al., 2012).

However, there is uncertainty in the degree to which PSF conversion

and emissions have been directly sanctioned by governments via

land‐use concessions, considering that PSF conversion, including by

smallholders, occurs both inside and outside of concessions. The

land‐use status and relative contributions of industrial plantations

and smallholders to PSF conversion and emissions must be clarified

if recently announced measures to reduce peatland emissions

through bans on further industrial conversions and increased peat

restoration (President of Indonesia, 2011b, 2016) are to be effective.

Conversion of peatland to agriculture requires drainage to

change water‐logged swamp conditions to dry, aerated soil suitable

for crop production (Comeau et al., 2016; Hirano et al., 2012; Hooi-

jer, Silvius, Wösten, & Page, 2006; Hooijer et al., 2010; Wijedasa et

al., 2016). Drainage promotes aerobic microbial decomposition of

the peat, which leads to globally significant CO2 emissions and fluvial

losses of ancient carbon deep below the surface (Drösler et al.,

2014; Evans et al., 2014; Moore et al., 2013). Hooijer et al. (2010)

estimated that peatland drainage‐related emissions alone were

equivalent to 1.3%–3.3% of annual global greenhouse gas emissions

across all of South‐East Asia (including Papua New Guinea) in 2010.

This estimate has recently been updated for Peninsular Malaysia,

Sumatra, and Borneo to be 1.6% of global fossil fuel emissions

(Miettinen, Hooijer, Vernimmen, Liew, & Page, 2017). By 2020, emis-

sions due to industrial plantation growth on regional peatlands are

predicted to increase two‐ to threefold relative to 2010 (Miettinen,

Hooijer, Shi et al., 2012; Miettinen et al., 2016).

Prior to the COP21 climate‐change summit in Paris, South‐East
Asian countries declared commitments to reduce carbon emissions,

particularly from peatlands. Indonesia—which contains 85% of the

region's peatlands and from which 63% of national emissions arise

from land‐use change and fires concentrated on peatlands—declared

a target of 29% reduction in national emissions by 2030 compared

to the business‐as‐usual scenario (Republic of Indonesia, 2016). Most

of this reduction would be achieved through improved land‐use and

spatial planning, sustainable forest management, and the restoration

of degraded ecosystems (Republic of Indonesia, 2016). The Indone-

sian moratorium (Republic of Indonesia, 2016) is a key element of

Indonesia's emission‐reduction plan and illustrative of its commit-

ment to reduce emissions from land use, land‐use change, and for-

estry (LULUCF). First proposed to facilitate a $1‐billion bilateral

partnership to prepare Indonesia for a global reducing emissions

from deforestation and degradation (REDD+) scheme (United

Nations & Framework Convention on Climate Change (UNFCCC), &

Bonn, 2009), the moratorium prohibits new concessions for indus-

trial agricultural plantations and logging in primary forests and peat-

lands (President of Indonesia, 2011b, 2016; Sloan, Edwards, &

Laurance, 2012). The moratorium in peatlands was relatively ambi-

tious, subsuming all but the shallowest of peatlands not already

within concessions, including degraded peat forests and forest‐agri-
cultural mosaics. It served to demarcate the maximum extent of

industrial plantation conversion and forest exploitation by allowing

industrial conversion and exploitation only within concessions

granted as of early 2011. Notably, the moratorium does not address

smallholder PSF conversion or seek to retain hydrologically integral

peat domes across the patchwork of PSF fragments inside and out-

side of concessions. This is important because peatlands are made

up of hydrological units, where protected PSF spanning only part of

a peat dome may still experience drainage and CO2 emissions due to

drainage‐based conversion elsewhere in the dome (Hooijer et al.,

2010; Nagano et al., 2013).

Despite the global significance of regional peatland emissions

and recent declarations to stem them, previous estimates have not

assessed the degree to which agriculture conversions have occurred

inside or outside government‐sanctioned agriculture concessions.

An important distinction between industrial plantations and small-

holders is that the latter are not legally confined by government

concessions and the legal or illegal extent of their activities often

goes unrecorded in land‐use maps (Chisholm et al., 2016; Uryu et

al., 2008). The result has been uncertainty in the relative and abso-

lute impact of different land uses on PSF conversion and emissions

and concordant uncertainty in the utility of land‐use plans to stem

emissions. Further, projections of land‐use change and resultant

emissions have simplistically drawn from observations separated by

decades, ignoring spatial and temporal variations in conversion

rates amongst land uses, peat depths, and regions (Abood, Lee,

Burivalova, Garcia‐Ulloa, & Koh, 2014; Hooijer et al., 2010; Mietti-

nen, Hooijer, Shi et al., 2012; Miettinen et al., 2016) and overlook-

ing nonlinear trends in emissions and peat subsidence (Abood

et al., 2014; Busch et al., 2015; Koh, Miettinen, Liew, & Ghazoul,

2011; Miettinen & Liew, 2010a; Miettinen et al., 2017). With the

major regional wildfire haze events of 2015 and the COP21 cli-

mate‐change summit focusing global attention on regional peatland

destruction (Wijedasa et al., 2015), there is a critical need for

improved estimates of historic and future peatland emissions to

ensure effective regional land‐use plans.

Here, we map land‐cover change over South‐East Asian peat-

lands from 1990 to 2010 and project future PSF conversion in

Sumatra and Kalimantan (hereafter Indonesia) under plausible scenar-

ios of agricultural expansion to quantify past and future peat CO2

emissions due to PSF conversion and drainage accounting for cur-

rent emission‐reduction strategies. We focus on agricultural conver-

sion because it is the greatest driver of peatland loss (Koh et al.,

2011; Miettinen, Hooijer, Wang, Shi, & Liew, 2012; Miettinen &

Liew, 2010a; Miettinen, Shi, & Liew, 2012; Miettinen, Hooijer, Shi et
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al., 2012; Miettinen et al., 2016). We used Landsat satellite imagery

to map agriculture expansion from industrial plantations and small-

holders in peat swamps at 30‐m resolution over 1990, 2000, 2005,

and 2010 and subsequently to project PSF‐to‐agriculture conversion

in Indonesia from 2011 onwards. Projections focus on Indonesia due

to the availability of recent spatial data on agricultural and forestry

concessions and because it contains 85% of the region's remaining

PSF.

Conversion inside industrial agricultural concessions was pro-

jected according to historical (2005–2010) rates inside concessions

specific to region (Sumatra, Kalimantan) and peat‐depth class. Con-

version outside concessions was similarly projected at historic

rates of smallholder agriculture expansion specific to region and

peat depth for all PSF eligible for conversion according to official

land‐use plans. Finally, we used the IPCC framework of Drösler et

al. (2014) and Hooijer et al. (2006, 2010) to estimate historic

(1990–2010) and near‐current/future (2010–2130) peat CO2 emis-

sions following agricultural conversion and drainage within current

land‐use plans. Our emission estimates are conservative because

they exclusively consider emissions from peat oxidation arising

after agricultural conversion and exclude emissions from unknown

amounts of above‐ground biomass loss and fires which have

recently been estimated to be 0.48 GtCO2 per year (Miettinen et

al., 2017). We provide an improved understanding of historically

“committed” and likely future peat CO2 emissions due to agricul-

ture and implicitly evaluate the effectiveness of the Indonesian

moratorium and similar schemes in curbing emissions from exten-

sively disturbed peatlands.

2 | MATERIALS AND METHODS

Our methodology entailed four steps. First, we mapped agricultural

land use and, secondly, nonagricultural land covers on peatlands for

1990, 2000, 2005, and 2010 using Landsat imagery. Third, we pro-

jected the exhaustive conversion of remaining peat swamp forest

(PSF). Fourth, we estimated resultant CO2 emissions from peatlands

over 1990–2130. These steps are detailed below.

2.1 | Historic (1990–2010) peatland agricultural
conversion

Historic peatland agricultural expansion was mapped over 1990–
2010 across all peatlands of South‐East Asia (Peninsular Malaysia,

Southern Thailand, Sumatra, and Borneo), as delineated by Wijedasa,

Sloan, Michelakis, and Clements (2012), by visually interpreting 268

Landsat satellite images and 24 Landsat GeoCover tiles (30‐m resolu-

tion) (The Global Land Cover Facility, 2011). Four agricultural classes

(industrial oil palm plantation, industrial Acacia plantation, other

industrial plantations, and smallholder agriculture) (Table S4) were

mapped for 1990, 2000, 2005, and 2010 following the protocols of

Miettinen et al. (Miettinen, Hyer, Chia, Kwoh, & Liew, 2013; Mietti-

nen & Liew, 2010b; Miettinen, Hooijer, Shi et al., 2012; Miettinen

et al., 2016; Miettinen et al., 2017). We estimated the net aerial

changes and rates of expansion of each class over 1990–2000,
2000–2005, and 2005–2010 (Table S1).

2.2 | Creation of a 2010 peatland land‐cover map

To project PSF conversion from 2010, we first composed a single

land‐use/cover map of 2010 spanning all South‐East Asian peatlands.

This map integrated the four land‐use classes of the 2010 agricul-

tural map described above with four land‐cover classes of a separate

2010 map of nonagricultural peatlands described below. This inte-

grated land‐use/cover map was the basis for projecting PSF conver-

sion in Indonesia from 2010.

We classified all nonagricultural peatlands into four land‐cover
classes: (i) mature PSF, (ii) secondary/regrowth PSF, (iii) non‐PSF
mosaic lands, and (iv) bare/urban/burned lands (Table S4). Classes

were delineated using a maximum‐likelihood supervised classification

of Landsat imagery following Wijedasa et al. (2012), with a slight

variation on their postclassification image‐compositing procedure

used to “fill in” cloudy areas in a classified image with data from

coincident classified images. The study area covered a total of 58

different Landsat footprints across South‐East Asia.
Our revised image‐compositing procedure yielded more accurate

land‐cover maps than those of Wijedasa et al. (2012). The revised

procedure entailed three steps. First, classified images were com-

pared to unclassified false‐colour Landsat satellite images and classi-

fied areas that appeared to accurately reflect the land‐cover classes

visually interpreted in the false‐colour composite were manually

demarcated and “clipped” out from each classified image of 2010.

Second, clipped extents were ranked according to image date (most

recent to least recent) and cloud cover (least cloudy to most cloudy).

At last, a cloud‐free composite classified image was composed using

the highest‐ranking clipped extents for each location across all

South‐East Asian peatlands.

2.2.1 | Accuracy assessment of historical agriculture
& 2010 land‐use/cover maps

Separate accuracy assessments following methods described by

Wijedasa et al. (2012) were realized for the 1990–2010 agricultural

land‐use maps and the integrated 2010 land‐use/cover map. Actual

land‐use/cover classes were interpreted for 1,160 and 687 randomly

distributed points using high‐resolution imagery in Google Earth and

compared respectively against the 1990–2010 agricultural map and

the integrated 2010 land‐use/cover map. The Google Earth imagery

used was acquired over the same time period as the Landsat ima-

gery. Conducting these assessments separately allowed for the use

of additional historical reference data for the 2000s when assessing

the 1990–2010 agricultural maps. The accuracy assessments have

been discussed in detail in Wijedasa et al. (2012).

Regarding the integrated 2010 land‐use/cover map, classification

accuracy was especially high for the mature PSF class (92%) but

lower for the disturbed/regrowth PSF class (65%) due to partial con-

fusion with the mature PSF class (Table S5). This discrepancy does
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not undermine our analysis, however, as mature PSF and disturbed/

regrowth PSF were considered as one entity in our projection and

estimates of historical and future emissions. The overall accuracy of

the map was 81.6%. Upon weighting the user's accuracy by the

mapped area of each class to account for differences in class extent,

the overall classification accuracy was 81.1%.

For the accuracy assessment of the 1990–2010 peatland agricul-

tural land‐use maps, 565 of the 687 ground‐reference sites surveyed

were for the year 2010 with the remaining 122 reference points

spread between the years 2000 and 2009 (Table S6). Considering

the temporal persistence of agricultural land uses, reference sites of

a given year were used to assess the classification accuracy of an

agricultural class mapped on or after that year. For instance, a refer-

ence site interpreted using a 2005 Google Earth image would be

used to validate an agricultural class mapped locally on or after

2005. The overall classification accuracy of the agricultural maps was

91.4%, with an area‐weighted overall classification accuracy of

92.8% (Table S6).

2.3 | Projecting future (2010–2130) land‐cover
change on indonesian peatland

Our projection of PSF‐to‐agriculture conversion was realized exclu-

sively for Indonesia because only in Indonesia are recent spatial data

on agricultural concession designations available. However, our pro-

jection still describes a regional scenario, considering that Indonesia

contained 85% of remaining PSF in South‐East Asia as of 2010.

PSF conversion in Indonesia was projected from 2010 to 2130

following two steps. The first step entailed segmenting remaining

PSF as of 2010 (i.e., mature PSF and secondary/regrowth PSF) into

different official land‐use designations, detailed below (e.g., oil palm

concession, protected area). The second step entailed extrapolating

historic (2005–2010) agricultural conversion rates specific to each

combination of land‐use designation, region, and peat depth until all

nonprotected PSF of 2010 within a designated area was converted.

These steps are elaborated below.

2.3.1 | Segmenting remaining PSF of 2010 by land‐
use designation

Remnant PSF in 2010 was segmented into subregional zones of rela-

tively homogenous land‐use and biophysical characteristics, thus

defining the spatial units of our land‐use projection. PSF was first

segmented by official land‐use designation, namely protected areas,

the Indonesian moratorium area, smallholder agriculture, and indus-

trial agricultural concessions for oil palm or Acacia production. Con-

cessions areas were as delineated by the Indonesian government in

2011 (Ministry of Forestry, 2010). Occasional spatial overlap

amongst these oil palm and Acacia concessions was resolved by

labelling overlapping areas according to the concession designation

corresponding to the locally dominant industrial land use. Protected

area maps of all nationally designated protected areas were obtained

from the World Database of Protected Areas (UNEP/IUCN, 2010).

The official fifth Indonesian moratorium map (IMM5) (President of

Indonesia, 2011b, 2016; Presidential Working Unit of Supervision,

Control and Development, 2013) defines the area over which

Indonesia has prohibited new industrial agricultural, logging, and min-

ing concessions. The areas outside of agricultural concessions, pro-

tected areas, and the moratorium were considered the domain of

smallholder agriculture, officially designated or otherwise. Each of

these four land‐use designations were in turn further partitioned by

region (Sumatra, Kalimantan) and peat‐depth class (mapped by Wet-

lands International; Wahyunto, & Subagjo, 2003; Wahyunto & Sub-

agjo, 2004) to reflect spatial variation in PSF conversion rates. In

combination, these land‐use designations and partitions thereof pro-

vided the basis to describe a plausible scenario of future PSF con-

version and conservation presuming that present land‐use schemes

are fully realized.

2.3.2 | Future conversion of PSF based on historic
(2005–2010) agriculture expansion rates

Agriculture conversion of PSF was projected from 2010 at historical

(2005–2010) rates specific to each partition of each land‐use desig-

nation until all PSF therein would be converted. The use of historical

rates specific to each partition recognizes distinct local relationships

between PSF loss, the land‐use designation, and the partitions

thereof, for example, hypothetically, slower industrial plantation

expansion amongst PSF fragments within deep‐peat areas of conces-

sions, or rapid smallholder expansion in undisturbed shallow‐peat
areas outside of concessions.

It was assumed that future conversion rates within a given parti-

tion of a given land‐use designation would reflect historical expan-

sion rates of the predominant agricultural class of the partition.

Thus, projected conversion rates within a given industrial‐concession
partition reflected industrial plantation expansion rates within that

partition, while projected conversion rates within a given partition

outside of concessions reflected historical smallholder expansion

rates within that partition. This approach yields conservatively late

estimates of the year by which all PSFs are projected to be con-

verted because the locally predominant agricultural land use alone

does not account for all PSF conversion within a given partition or

land‐use designation.

We assumed that PSF within protected areas, logging conces-

sions, and the moratorium area would persist indefinitely because

PSF conversion is prohibited within the former three areas while

industrial agriculture conversion (including for Acacia plantations) is

prohibited within the latter. However, peat CO2 emissions from all

such areas are still possible due to partial peat drainage along their

peripheries following the agricultural conversion of adjacent peat-

lands. While Indonesia has renewed its dedication to protecting

peatlands and moratorium areas (Ministry of Environment of Indone-

sia, 2010; President of Indonesia, 2011a; Republic of Indonesia,

2016), smallholder agriculture is not precluded by the moratorium

and so it is possible that some moratorium PSF areas may be con-

verted by smallholders in the absence of other protections or
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enforcement. Our projection of PSF conservation in protected areas,

logging, and moratorium areas is therefore probably conservative.

The extrapolation of historical rates of agricultural expansion

observed over 2005–2010 was preferable to extrapolating rates over

longer historical periods such as 1990–2010 because the dynamics

of PSF conversion have changed over time. Whereas Indonesian oil

palm expansion rates over 2005–2010 are comparable to those over

1990–2010, expansion rates for Acacia plantations and smallholder

over 2005–2010 are ~50% greater than for 1990–2010 (Table S1),

reflecting in part the Indonesian government's promotion of Acacia

expansion since the mid‐2000s (Verchot et al., 2010). Increasing

rates of expansion and recent policy shifts support our choice to

project future land‐use change according to the relatively recent his-

torical expansion rates for 2005–2010.
We assessed the efficacy of the Indonesian moratorium and pro-

tected areas at maintaining PSF integrity given expected PSF conver-

sion in other land‐use designations by simulating the potential for

passive drainage and emissions from peat oxidization within morato-

rium and protected areas. All moratorium and protected PSF within

1 km and 2 km of lands converted as of 2010 were considered sub-

ject to passive drainage, as per Hooijer et al. (2010), with the expec-

tation of actual drainage decreasing with distance (Table 2). Peat

CO2 emissions from drained PSF were estimated using the IPCC Tier

1 emission factors (Table S7) for drained forests on organic soils

(Supplementary Dataset: Summary.xls: IMM5_PassiveDrainageEmis-

sions). However, these emissions were estimated for 2010 only

because projecting future emissions due to drainage in protected or

moratorium PSF would require a prohibitive degree of precision con-

cerning the location and distribution of future PSF conversion over

specific periods.

2.4 | Estimating historical and future CO2 emissions
from peatlands

Peat CO2 emissions following historical (1990–2010) and future

(2010–2130) land‐cover change were estimated following the meth-

ods of the IPCC framework of Drösler et al. (2014) and Hooijer et al.

(2006, 2010), with key refinements. Our methods estimate CO2

emissions following large‐scale peat drainage for agriculture including

tree plantations by integrating: (a) our aerial estimates of historical

and future agricultural conversion on peatlands (Tables 1, S1, S2), (b)

peat‐depth maps of Wetlands International (Wahyunto & Subagjo,

2004; Wahyunto & Subagjo, 2003), extended using the original PSF‐
cover map of Wijedasa et al. (2012), (c) peatland subsidence rates

following drainage (to account for the local cessation of emissions

once all peat soil has been oxidized) (Couwenberg & Hooijer, 2013;

Hooijer et al., 2012; Jauhiainen, Hooijer, & Page, 2012), (d) CO2

emission rates from peatlands converted to specific agriculture types

according to IPCC Tier 1 estimates of emissions due to peat oxida-

tion (CO2‐CON‐SITE) (IPCC, 2014), varied by whether they were ele-

vated or not elevated in the initial years postconversion as per

Hooijer et al. (2006, 2010), and (e) IPCC Tier 1 estimates for dis-

solved organic carbon (CO2‐CDOC) (Table S7).

2.4.1 | Peatland emissions

The estimation of emissions entails 18 emission scenarios for each

peatland agriculture class (i.e., oil palm, Acacia, smallholder, and other

industrial). Each scenario is outlined in Table S8. Divergence amongst

these scenarios reflects key variations of three parameters, namely

emission factors for peatland conversion, peat subsidence rates, and

emission factors for dissolved organic carbon.

The first level of variation is defined by the IPCC emission fac-

tors specific to each of our four agriculture land uses. IPCC emission

factors entail three potential values or “scenarios” based on a 95%

confidence interval around the nominal IPCC emission rate. These

values, denoted by CO2‐CON‐SITE in Table S7, are (i) Upper CI, in

which the upper 95% confidence interval of the IPCC emission fac-

tor is used; (ii) IPCC Emission Factor, in which the IPCC Tier 1 emis-

sion factor is used; and (iii) Lower CI, in which the lower 95%

confidence interval of the IPCC emission factor is used.

The second level of variation in our emission scenarios pertains

to whether emissions during the first 5 years following PSF defor-

estation and drainage are elevated or not. In the first such situation,

denoted Scenario 1, emissions from converted peatland are higher

(178 t CO2 ha−1 yr−1) during the first 5 years postconversion, as per

Hooijer et al. (2012), after which they are lower, as per the IPCC

Tier 1 (Drösler et al., 2014) emission factors, for our specific agricul-

tural land uses (CO2‐CON‐SITE) and dissolved organic carbon (CO2‐
CDOC) (Table S7). In contrast, in the alternative situation denoted

Scenario 2, IPCC Tier 1 emission factors for each of our plantation

types on drained organic soils are treated as constant rates from the

moment of peatland conversion (Page et al., 2011; Transportation

and Climate Division Office of Transportation and Air Quality U.S.

Environmental Protection Agency, 2014). Each of these two situa-

tions references the specific IPCC Tier 1 emission factor for dis-

solved organic carbon (CO2‐CDOC) and different types of agriculture

(CO2‐CON‐SITE) on drained organic soils (i.e., industrial oil palm, indus-

trial Acacia plantations, smallholder agriculture, and other industrial

plantations) (Drösler et al., 2014). The emission estimate of the first

5 years post‐PSF conversion to agriculture is currently debated in lit-

erature (Page et al., 2011; Transportation and Climate Division

Office of Transportation and Air Quality U.S. Environmental Protec-

tion Agency, 2014). The emissions estimate by Hooijer et al. (2012)

remain the only study to measure subsidence and estimate corre-

sponding emissions in the first 5 years post conversion of PSF to

agriculture. Similar high initial emissions after drainage were found

by Kool, Buurman, and Hoekman (2006) in contexts of peat drainage

for illegal logging. While the Kool et al.'s study does not pertain to

PSF conversion to agriculture, its value of 109 [CI 57–161] t CO2

ha−1 y−1 falls within the range of Scenario 1 here.

The third level of variation is the IPCC Tier 1 emission factor for

dissolved organic carbon, which again defines three values based on

the 95% confidence interval. These values, denoted CO2‐CDOC in

Table S7, are thus (a), Upper 95% confidence interval (4.18 t CO2

ha−1 yr−1); (b), IPCC Tier 1 emission factor (3.01 t CO2 ha−1 yr−1);

and (c), lower 95% confidence interval (2.06 t CO2 ha−1 yr−1).
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In total, for each of our four agricultural land uses, the three

levels of variation discussed above define eighteen emission scenar-

ios. Emissions reported in the main text are typically presented as a

range of the absolute lowest and highest emissions defined by these

eighteen scenarios. Hereafter, each emission scenario is labelled

according to its unique combination of values, following the order

and terminology discussed above. For example, the scenario Upper

CI Scenario1a denotes the combination of the “upper IPCC” emission

factors for peatland conversion, “Scenario 1” regarding initially ele-

vated peatland emissions, and value “a” regarding the upper IPCC

emission factor for dissolved organic carbon. Similarly, the scenario

IPCC Emission Factor Scenario1a denotes the combination entailing

the nominal IPCC emission factors for peatland conversion and is

otherwise the same.

2.4.2 | Peatland subsidence and depth

Peat emissions for a given partition of a given land‐use designation

were presumed to continue at rates described above from the first‐
year peatland conversion was observed until all peat soil in the parti-

tion was or would be oxidized. This cessation point is a function of

the rate at which peatlands subside following peatland conversion as

well as the peat depth at the time of conversion. Accordingly, it was

necessary to estimate subsidence rates and peat depths in a spatially

explicit manner.

For both our emission scenarios (Scenario 1 and Scenario 2),

which vary in terms of their emission rates during the first 5 years

postconversion, we assumed an elevated subsidence rate of 1.42 m/

5 years during the first 5 years following conversion and thereafter

assumed a lesser land‐use‐specific subsidence rate given in Table S9.

For smallholder agriculture and other industrial plantations, the lower

subsidence rate for oil palm was applied because the literature has

not specified subsidence rates specific to these agricultural land

uses. These staged subsidence rates reflect measurements of post-

conversion elevation to peatlands (Couwenberg, Dommain, & Joos-

ten, 2009; Couwenberg & Hooijer, 2013; Hooijer et al., 2006;

Jauhiainen et al., 2012).

Subsidence as well as emissions were averaged over 5‐year inter-
vals during 2000–2130 and over the single 10‐year interval for

1990–2000, in keeping with the time periods for which historical

land change was mapped. For the period 1990–2000, we assumed

that all peatlands converted to agriculture by 1990 were emitting

and subsiding at the reduced rates. For peatlands converted

between 1990 and 2000, we assumed that these peatlands had

experienced five initial years of high subsidence rates followed by a

further 2.5 years of the reduced subsidence rates. For Scenario 1,

peatlands converted between 1990 and 2000 were similarly

assumed to experience higher emission rates for the first 5 years

postconversion, followed by 2.5 years of reduced emission rates.

We estimated the spatial extent of peatlands of various depths

by integrating regional Wetlands International (WI) peat‐depth maps

(Wahyunto & Subagjo, 2004; Wahyunto & Subagjo, 2003) with

Wijedasa et al. (2012) map of original regional PSF extent and then

correcting for historical (premapping) peatland subsidence. The origi-

nal PSF map of Wijedasa et al. (2012), which also defines our study

extent, integrated historic soil and vegetation maps with Landsat

imagery from 1990 to delineate PSF cover prior to the commence-

ment of anthropogenic land‐cover change, including shallow areas of

peatlands converted prior to the creation of the WI peat‐depth maps

around the year 2000.

Nominal peat depths in all peatland maps were occasionally

adjusted to correct for subsidence that occurred prior to the original

delineations of peat depths. Specifically, as the WI depth maps were

produced after 2000, they would not account for subsidence follow-

ing conversion realized before 2000. We corrected for subsidence

occurring prior to the WI maps by increasing the depths reported by

WI by the estimated subsidence over 1990–2000 wherever peatland

was converted over 1990–2000. Where WI did not map depths for

peatlands observed in the present study, we conservatively esti-

mated depths at 1 m as per Hooijer et al. (2006, 2010) and again

corrected for postconversion subsidence as above. The step‐like
declining trend in peatland emissions over time (Figure S1) reflects

the 0.5‐m intervals in peat‐depth maps and indicates vast geographi-

cal regions of relatively shallow peat ceasing to emit after exhaustive

peat CO2 emissions.

The WI peat‐depth maps (Wahyunto & Subagjo, 2004;

Wahyunto & Subagjo, 2003) used here probably conservatively esti-

mate actual peat depth at any given point (Jaenicke, Rieley, Mott,

Kimman, & Siegert, 2008). While the WI maps have been updated

by Ritung, Wahyunto, Sukarman, and Suparto (2011), an overlay and

visual comparison of the maps of WI and Ritung et al. (2011) shows

that the updated maps for our study area (Sumatra and Kalimantan)

are essentially the WI maps less those peatlands that no longer exist

due to exhaustive postconversion oxidation and subsidence. Our

study already captures these and other instances of peatland disap-

pearance by projecting peatland oxidation and subsidence until such

time as the entire peat mass becomes exhausted, as detailed above.

Our estimates may be particularly conservative for the case for

Malaysia, Southern Thailand, and Brunei, where some greater peat

depths have been reported (Anderson, 1964), although no alternative

national peat‐depth map exists to confirm this generally. We

nonetheless emphasize that emissions will be more prolonged and

ultimately greater to the degree that actual peat depths are greater

than estimated here.

Peatland emissions were compared to cumulative global and

national figures from the World Bank (2013). These emissions

include carbon dioxide emissions from the burning of fossil fuels and

cement manufacture.

3 | RESULTS

3.1 | Drivers of peatland conversion inside and
outside government‐sanctioned concessions

Our analysis finds that by 2010, PSF had declined to 40% of its orig-

inal extent, with large variation between countries and regions

WIJEDASA ET AL. | 7



(Tables 1, S1 and Figure 1). The decline of original PSF extent in

2010 was greatest in Sumatra (−72%) and Peninsula Malaysia/Thai-

land (−74%), as compared to the combined regions of Sabah, Sara-

wak, Brunei (−50%), and Kalimantan (−46%) (Table S2). The

remaining PSF is in various states of degradation.

Regionally smallholders have been the principal individual driver

of peatland‐to‐agriculture conversion (Tables 1, S2). Smallholders

accounted for 43% of all agricultural conversion of peatland

observed by 2010, followed by industrial oil palm plantations at

39%, industrial Acacia plantations at 11%, and other industrial plan-

tations at 6% (Table 1). The magnitude of smallholder conversion rel-

ative to industrial plantations is contrary to other observations over

the same period for Sumatra and elsewhere in South‐East Asia

(Abood et al., 2014; Lee et al., 2014; Miettinen & Liew, 2010a; Miet-

tinen, Hooijer, Shi et al., 2012; Miettinen et al., 2016). Smallholder

conversion and emissions have typically been overlooked in favour

of more readily detectable industrial agricultural activities (Abood et

al., 2014; Miettinen, Wang, Hooijer, & Liew, 2013; Miettinen, Hooi-

jer, Shi et al., 2012; Miettinen et al., 2012; Miettinen et al., 2016).

While the extent of smallholder agriculture has more than doubled

between 1990 and 2010, its extent relative to that of industrial agri-

cultural land uses (oil palm, Acacia, other industrial plantations) has

declined due to a sevenfold increase in the latter over the same per-

iod (Table 1). The ratio of smallholders to industrial agricultural

extent regionally fell steadily from 2.4 in 1990 to 0.7 in 2010

(Table 1).

The relative areas and distribution of industrial plantations, small-

holders, and total agriculture conversion correspond poorly with

known concessions. In Indonesia, where most regional peatland‐to‐
agriculture conversion occurred and official concession maps are

available, 70% of peatlands converted to agriculture occurred out-

side of known industrial plantation concessions. Outside concessions,

smallholders accounted for 60% of peatland conversion while indus-

trial plantations accounted for a surprisingly substantial remainder,

with oil palm accounting for 34% and Acacia 6%. Inside plantation

concessions, smallholders still accounted for a substantial 23% of

conversion, followed by industrial oil palm at 42% and Acacia at 35%

(Table 1). Thus, in Indonesia, smallholders account for most PSF

F IGURE 1 Land cover on peatlands in South‐East Asia for the years 2010 and 2040

8 | WIJEDASA ET AL.



conversion generally, while industrial oil palm concessions account

for similar proportions of PSF conversion inside versus outside of

concessions.

Our estimate of agricultural extent on peatlands is greater than

previously estimated. We found that all industrial plantations com-

bined and smallholder agriculture respectively cover 28% and 23%

of the original peatland extent, compared to previous reports of

15%–20% (Miettinen & Liew, 2010a; Miettinen, Hooijer, Shi et al.,

2012; Miettinen et al., 2016) and 17.8% (Miettinen & Liew, 2010a)

cover. Our greater estimates of agricultural extent for South‐East
Asia are probably attributable to the finer spatial resolution of our

data and relatively nuanced visual interpretation of the Landsat ima-

gery. Unlike many previous studies, our estimates also encompass

the entire regional peatland extent, including Brunei and southern

Thailand, across which conversion rates and agricultural practices

vary considerably (Miettinen & Liew, 2010a; Miettinen, Hooijer,

Wang, et al., 2012).

3.2 | Future peatland land use

In Indonesia, 53% of current national PSF (45% of the remaining

regional PSF extent) is projected to disappear over the next three

decades given historic rates of conversion and current land‐use plans

(Figure 1). Specifically, 28% of remaining Indonesian PSF is within

industrial plantation concessions for oil palm and Acacia, which may

be converted by ~2040, while a further 25% exists outside of all

land‐use plans (i.e., outside industrial plantation and logging conces-

sions, protected areas, moratorium areas) and may also be converted

by ~2040 given the historic smallholder conversion rates outside

concessions (Table S1). However, these projections are conservative,

particularly given the possibility of smallholder conversion of PSF

under the moratorium. Some 42% of remnant Indonesian PSF lies

within protected areas and areas covered by the moratorium, which

we optimistically presumed to persist indefinitely, and a further 4%

lies within logging concessions that legally cannot be converted.

3.3 | Indonesian moratorium

The potential of the Indonesian moratorium on new industrial con-

cessions to influence trajectories of PSF loss and stem resulting

emissions is limited despite its extensiveness because of the scale of

historic PSF clearance, conversion, concessions, and fragmentation.

While the moratorium encompasses 32% of Indonesia's original peat-

land extent, only 52% of this area is actually PSF (Figure 2). The

remaining moratorium area is either agriculture (22%) or nonagricul-

tural mosaic and degraded land covers (27%), both of which continu-

ally emit large amounts of CO2 (Miettinen et al., 2017). Further, a

significant proportion of the PSF encompassed by the moratorium is,

in addition to being previously legally protected from conversion

(Murdiyarso, Dewi, Lawrence, & Seymour, 2011), threatened by pas-

sive drainage and peat CO2 emissions due to the drainage of adja-

cent agricultural areas. We found that ~40% of PSF under the

moratorium is within the critical distance of <1 km (Hooijer et al.,

2010, 2012) from existing agriculture as of 2010 (Table 2), where

passive drainage and peat CO2 emissions are probable. This propor-

tion will increase in future with the progressive agricultural conver-

sion inside and outside of concessions. Upon accounting for current

land use and passive drainage, 40‐48% of the intact PSF in the

moratorium area on peatlands is a carbon source, having estimated

gross emissions of 0.02–0.05 GtCO2 in 2010 (Table 2).

3.4 | Emissions

Our estimates of gross historic CO2 emissions during 1990–2010
following peat drainage and agriculture conversion are also higher

than previously estimated. We estimate that over 1990–2010, of the
60% of original PSF extent lost, 35% of peatlands underwent agricul-

ture conversion which resulted in emissions of 1.46–6.43 GtCO2

(Table 3), equivalent to 0.3%–1.2% of global CO2 emissions due to

fossil fuels and cement production during the same period (World

Bank, 2013). While this is just below the range of 1.3%–3.1% of

120,000 80,000 40,000 0 40,000 80,000 120,000
Area (km2)

SUMATRA KALIMANTAN

INDONESIAN
MORATORIUM

INDONESIAN
PEATLANDS

F IGURE 2 Land cover on Indonesian peatlands (excluding West Papua) (bottom) and within the extent of the Indonesian moratorium on
new concessions (top), for peatlands defined by the present study. [PSF refers to peat swamp forest]
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global emissions estimated by Hooijer et al. (2010), their calculations

incorporated a much larger peatland extent by including nonagricul-

tural degraded peatlands and the Indonesian province of Papua, sug-

gesting that actual total regional peatland emissions are much higher

than previously indicated.

Emissions during 1990–2010 varied substantially across South‐
East Asia. The greatest cumulative emissions arose from Sumatra

(1.05–4.54 GtCO2) followed by Malaysia (0.23–1.13 GtCO2) and Kal-

imantan (0.17–0.77 GtCO2). Annual emission rates from agriculture

on peatland nearly doubled over 1990–2000, rising from 0.04–0.17
GtCO2/yr during 1990–2000 to 0.08–0.46 GtCO2/yr during 2000–
2005 and to 0.09–0.38 GtCO2/yr during 2005–2010 (Figure 3 S1).

This increase was driven mainly by a 116%–130% increase in emis-

sions from Sumatra, rising from 0.03–0.12 GtCO2/yr during 1990–
2000 to 0.07–0.26 GtCO2/yr during 2005–2010, reflecting a signifi-

cant recent expansion of industrial oil palm plantations and small-

holders (Tables 1, S1).

CO2 emissions will continue rising and remain globally signifi-

cant given historic and future land‐use change despite the

Indonesian moratorium and similar extraconcession conservation ini-

tiatives. Committed emissions from peatlands converted to agricul-

ture prior to 2010 account for 58%–62% (2.48–7.43 GtCO2) and

33%–38% (1.95–4.02 GtCO2) of projected gross future peatland

emissions for 2011–2040 and 2041–2130, respectively (Figure 3,

S1, Table 3). Projected future emissions due to the conversion of

all unprotected, nonmoratorium peatlands between 2011 and 2040

will release similar emissions inside (1.02–2.75 GtCO2) and outside

concessions (0.48–2.53 GtCO2). Similar comparable emissions will

continue over 2040–2130 inside (2.24–4.06 GtCO2) and outside of

current concessions (1.01–4.24 GtCO2) (Table 3). By 2130, all

regional peatlands would completely vanish given current conver-

sion rates, and CO2 emissions would reduce considerably. Total

emissions from peatlands between 2011 and 2040 will be equiva-

lent to 0.7%–2.3% of global fossil fuel and cement emissions

between 1990 and 2010 and to 0.9%–2.2% between 2041 and

2130. The effective enforcement of recent Indonesian policy

towards peatland restoration might result in actual emissions fol-

lowing some of our lower projections.

TABLE 2 Extent of passively drained peat swamp forest (PSF) within the Indonesian moratorium due to agriculture conversion of peatlands
at 1 km and 2 km distance

Sumatra Kalimantan Total

km2

% affected by
drainage GtCO2 ha−1 yr−1 km2

% affected by
drainage

GtCO2

ha−1 yr−1 km2

% affected by
drainage GtCO2 ha−1 yr−1

Moratorium PSF 11,438 – 19,445 – 30,883 –

1‐km drainage 6,574 57% 0.013–0.023 5,861 30% 0.011–0.020 12,435 40% 0.024–0.043

2‐km drainage 7,948 69% 0.015–0.028 6,996 36% 0.014–0.024 14,944 48% 0.029–0.052

TABLE 3 Emissions (GtCO2) due to past and future agricultural conversion inside and outside of concessions on peatlands in Indonesia. The
range is the low and high estimates amongst eighteen scenarios for each peatland agriculture type (more info on emissions by land‐use type in
the Supplementary materials)

Historic emissionsa

Future emissions
(historic conversion)b

Future emissions (future
conversion) inside
concessionsc

Future emissions (future
conversion) outside land‐
use plansd

Total Future Emissionse

(historicb + future insidec

+ future outsidee)

1990–2010 2011–2040 2041–2130 2011–2040 2041–2130 2011–2040 2041–2130 2011–2040 2041–2130

INDONESIA 1.32–5.65 2.01–5.81 2.23–4.93 1.03–2.76 2.37–4.43 0.50–2.58 1.24–5.16 3.54–11.15 5.84–14.52

Kalimantan 0.19–0.84 0.18–0.76 0.14–0.43 0.22–1.05 0.68–1.68 0.10–0.51 0.60–2.71 0.50–2.32 1.42–4.82

Sumatra 1.12–4.80 1.83–5.05 2.09–4.50 0.81–1.71 1.69–2.75 0.40–2.07 0.64–2.45 3.04–8.83 4.42–9.70

MALAYSIA 0.23–1.13 0.75–2.70 0.49–1.73 0.75–2.70 0.49–1.73

East Malaysia 0.08–0.46 0.44–1.51 0.25–0.78 0.44–1.51 0.25–0.78

West Malaysia 0.15–0.67 0.31–1.19 0.24–0.95 0.31–1.19 0.24–0.95

TOTAL 1.55–6.77 2.77–8.51 2.73–6.66 1.03–2.76 2.37–4.43 0.50–2.58 1.24–5.16 4.29–13.86 6.33–16.25

Note. aEmissions due to historic conversion to 2010.
bThese data exclusively reflect the continuation of emissions from peatlands converted prior to 2010.
cEmissions due to conversion of PSF within oil palm and Acacia concessions.
dOutside land‐use plans denote future emissions due to conversion of mature/primary and secondary/regrowth PSF outside of concessions, the Indone-

sian moratorium area, and protected areas.
eTotal future emissions” include emissions from historic conversion and from inside and outside concessions. These data are underestimates of likely

total future emissions inclusive of future conversion.

10 | WIJEDASA ET AL.



4 | DISCUSSION

Reducing emissions from peatlands caused by the legacy of exten-

sive historical disturbances is complicated due to multiple interacting

factors (Figure S2). Land‐use planning and legislation that cover

entire peat domes are important, as peatlands are made up of hydro-

logical units and effective long‐term management requires that the

hydrological units are managed holistically. For example, partial drai-

nage of a unit, due to agriculture, will entail negative hydrological

impacts up to 2 or 3 km into adjacent areas of forest being managed

for conservation (Hooijer et al., 2010). While recent legislation has

acknowledged the importance of hydrological units and the need for

land‐use planning in peatland management, it remains extremely dif-

ficult to apply this legislation across landscapes with multiple stake-

holders, often unclear land use tenure, and multiple agencies and

levels of government (President of Indonesia, 2014a, 2016). An alter-

native to the unrealistic option of using legislation to rehabilitate

areas already under agriculture is to develop alternative nondrai-

nage‐based agriculture, which in theory would have much lower or

negligible emissions (Wijedasa et al., 2016). There is, therefore, a

demonstrable requirement for clear leadership and for effective

enforcement and adequate finance.

The major factors determining peatland emissions outlined here

lead to four recommendations to meaningfully reduce future emis-

sions: (1) conserve PSF inside concessions via greater cooperation

with agribusiness, (2) conserve PSF inside protected areas via

enhanced enforcement, (3) conserve PSF outside of all known land‐
use plans via clarification of land‐use status and tenure to allow

enforcement of legislation, and (4) encourage the development of

low emissions or CO2 neutral land uses (e.g., nondrainage‐based agri-

culture, silviculture) on land formerly converted from PSF.

First, the extent of peatland for which emissions’ reductions are

potentially most readily achievable is the 28% (20,230 km2) of

remaining Indonesian PSF within plantation concessions. If converted

to agriculture, this PSF would release 23%–26% (1.02–2.75 GtCO2)

of projected gross emissions between 2011 and 2040 (Table 3).

Arguably, this realm of PSF is currently the best protected, or at

least the most amenable to enhanced protection, as it has secure

land tenure (i.e., it lies within government‐designated concessions),

established company infrastructure and monitoring, financing, often

zero‐deforestation pledges by larger companies, and public scrutiny

of company actions to discourage illegal corporate and smallholder

conversion. Crucially, some of these PSFs are already independently

and voluntarily protected and managed by plantation companies as

high conservation value (HCV) and high carbon stock (HCS) forests

(APP, 2013; APRIL, 2015; Greenomics Indonesia, 2014; Greenpeace

UK, 2015). For instance, the two companies with the largest extent

of peatland concessions in Indonesia, APP and APRIL, have commit-

ted to conserve the remaining natural forest within their concessions

(APP, 2013; APRIL, 2015). This independent corporate protection of

PSF has also prevented smallholder encroachment of official pro-

tected areas in Sumatra, such as the Kampar Peninsular, Kerumutan,

Giak Siak Kechil‐Bukit Batu, and the south of Berbak National Park.

In some cases, plantation companies have gone a step further by

obtaining PSF ecosystem restoration licences enabling them to man-

age and restore logged protected forests within their landscapes,

such as the Riau Ecosystem Restoration Concession, the Giam Siak

Kechil Man and the Biosphere Reserve, and the Katingan Ecosystem

Restoration Concession (Ceruti, 2016; Indriatmoko, Atmadja, Utomo,

Ekaputri, & Komarudin, 2014). Together, these three concessions

cover three of the largest and most intact PSF hydrological units in

Indonesia. In this light, there exists an opportunity for national legis-

lation to build on these independent corporate initiatives and extend

formal PSF conservation across much larger areas of PSF within cur-

rent concessions.

However, PSFs within concessions still face three major uncer-

tainties. First, a 2014 revision to the Indonesian Plantation Act stipu-

lates that agriculture concessions must be fully converted to the

intended land use within 6 years of the licence date under penalty

of forfeiture (Butler, 2014; Greenomics Indonesia, 2014; President

of Indonesia, 2014b), seemingly contrary to the corporate initiatives

noted above. Second, many smaller, domestic oil palm companies

have not adopted conservation pledges but rather have earmarked

large areas of PSF for conversion via legally sanctioned protocols. In

Indonesia, such concessions are typically granted in large part by dis-

trict and provincial‐level governments, the land‐use plans of which

are no longer subject to amendment by the central government, leg-

ally or practically (Sloan et al., in review; McCarthy & Robinson,

2016). Third, major agriculture concessionaires have expressed

agreement in principal with new government legislation which would

enable “land swaps” between PSF in concessions zoned for conser-

vation with degraded forest elsewhere (preferably on mineral soils)

(Butler, 2013, April 19; Minister of Environment and Forestry,

2017a). So, too, has the Indonesian Ministry of Environment and

Forestry whose recent peatland conservation initiatives render some

plantations, on peat of 3m or greater depth or identified for conser-

vation, unsuitable for cultivation (Government of Indonesia, 2016;

Minister of Environment and Forestry, 2017b, 2017c, 2017d). Such

land swaps—ostensibly supportive of PSF conservation, particularly

where PSF is earmarked for conversion—also have the potential to

diminish current protections by removing plantation land tenure and

corporate vigilance. This, in turn, could render currently intact peat-

lands vulnerable to smallholder agricultural expansion. Successful

PSF conservation within concessions will ultimately depend heavily

on the security of the conservation pledges made by larger conces-

sion companies, as well as on similar initiatives being adopted more

widely by smaller companies. A current, temporary “freeze” on

Indonesian PSF conversion within concessions pending the clarifica-

tion of the extent of forest designated for conversion may provide

an opportune window in which to promote such a PSF conservation

initiative (Alisjahbana & Busch, 2017; Government of Indonesia,

2016).

The second initiative to reduce peatland emissions is to enhance

the protection of existing protected areas; this would complement

enhanced corporate‐driven PSF conservation, as discussed above.
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While we did not quantify PSF conversion or emissions from pro-

tected areas alone, conversion inside protected areas is doubtless

significant and is dominated by smallholder agriculture which results

in both active and passive drainage and emissions. The Indonesian

government has recently acknowledged that removing existing small-

holder agriculturalists from its protected areas is not feasible; it will,

instead, allow them to remain, provided that there is no further

encroachment (Jong, 2018). However, preventing future encroach-

ment will require resources (manpower and finance) in support of

successful implementation measures and it therefore remains highly

uncertain whether Indonesia can minimize emissions arising from

encroachment into protected peatland areas (Brun et al., 2015;

Gaveau et al., 2009; Miettinen, Wang et al., 2013).

Third, more generally, conservation may be expanded to the PSF

outside of concessions and the land‐use plans considered here. Such

expanded conservation could encompass the 25% (18,650 km2) of

Indonesian PSF situated outside of protected areas, the moratorium

area, and agricultural and logging concessions. Conserving this realm

of PSF would prevent 12%–22% (0.48–2.53 GtCO2) of anticipated

gross emissions between 2011 and 2040, or more if accounting for

the prevention of future passive PSF drainage. However, land‐use
planning and enforcement of legislation of these areas are hindered

by uncertainty in land‐use tenure. While some form of local govern-

ment land tenure or informal local community claims (known as

adats) may exist for these lands, they are not reflected on govern-

ment zoning maps. An attempt to bring these maps together into a

single map known as OneMap began a few years ago; however, it is

yet to show any results (Alisjahbana & Busch, 2017; McCarthy &

Robinson, 2016). If this single map does materialize, it would allow

enforcement of existing peatland laws to these lands, without which

it is possible that smallholder conversions of these areas may occur.

Fourth, as peatlands converted to agricultural use prior to 2010

will contribute 58%–62% (2.48–7.43 GtCO2) of future emissions to

2040 and are arguably under permanent cultivation for the foresee-

able future, developing agricultural techniques tolerant of high water

tables where there is a reduced (or ideally no) net loss of CO2

should be a regional priority (Wijedasa et al., 2016). Indeed, in 2016

and 2017, Indonesia enacted reforms stipulating average peat water

table depths of 40 cm within active concessions, provoking major

anxieties from agribusinesses but uncertain implications to date (Alis-

jahbana & Busch, 2017; Government of Indonesia, 2016; Minister of

Environment and Forestry, 2017b, 2017c, 2017d). Companies have

the finance, infrastructure, and knowledge to start developing such

techniques, which could be trialled in peatland restoration and alter-

native species trial sites. Techniques relevant to smaller agricultural

production should not be overlooked, however. Current agriculture

on wet peatlands or “paludiculture” is unproductive and largely

untested, in terms of both potential crops and markets (Giesen,

2015). In the interim, maintaining higher water tables under existing

agricultural uses would reduce peat CO2 emission rates and enhance

the long‐term sustainability of peatland agriculture, given that the

rapid oxidation of drained peat leads to peatland subsidence and

ultimately to inundation prohibitive of cultivation (Hooijer et al.,

2010, 2012). The contribution of paludiculture techniques to future

emission reduction is relatively uncertain but probably substantial.

Collectively, between 2011 and 2040, conservation of PSF inside

concessions, conservation of PSF outside of known concessions and

protected areas, and developing alternative high water table agricul-

tural techniques could prevent future peatland emissions equivalent

to 0.7%–2.3% of global fossil fuel and cement emissions between

1990 and 2010. These priorities entail relatively direct and difficult

“on‐the‐ground” engagements with the drivers of PSF loss compared

to current passive and potential future REDD+ strategies, including

the moratorium.

Our findings on the role of smallholder farmers question the

positions and related narratives prominent amongst conservationists

that government‐sanctioned corporate industrial plantations are

chiefly responsible for PSF loss (Abood et al., 2014; Koh et al., 2011;

Lee et al., 2014; Miettinen, Hooijer, Shi et al., 2012; Miettinen et al.,

2016). The findings instead recommend a more diversified conserva-

tion approach sensitive to smallholder dynamics and community for-

est management, including their interactions with industrial

plantations (Sloan, Locatelli, Wooster, & Gaveau, 2017). Recent sev-

ere haze events driven by peat fires in South‐East Asia, particularly

the 2015 El‐Niño related haze (Chisholm et al., 2016; Wijedasa et al.,

2015), have provided the impetus for significant land‐use reform

which could reduce drainage, conversion, and related emissions. The

Indonesian Peat Restoration Agency, responsible directly to the pres-

ident, was established in January 2016 with the mandate to restore

two million hectares of fire‐affected peatlands (President of Indone-

sia, 2016). Recent legislation also affords this agency the power to

identify PSF hydrological units and to prescribe land‐use plans to

maintain hydrological integrity (Minister of Environment and For-

estry, 2017c; President of Indonesia, 2014a). Such powers include

the ability to protect PSF and to rewet converted peatlands to avoid

significant carbon emissions from drainage and fires (Minister of

Environment and Forestry, 2017d, 2017e). This is consistent with

the recent legislation requiring companies to raise water tables in

agricultural areas as well as to rewet and restore peatlands currently

under plantation cultivation (Minister of Environment and Forestry,

F IGURE 3 Cumulative CO2 emissions under six emission scenarios due to historic (1990–2010) peatland conversion in Malaysia, Sumatra,
and Borneo with future projections until 2130 based on agricultural conversion of unprotected peat swamp forest. REGIONAL denotes
emissions from Malaysia, Brunei, Thailand, Sumatra, and Borneo. HISTORIC denotes emissions due to historical peatland conversion over 1990–
2010. INSIDE denotes future emissions due to conversion of mature/primary and secondary/regrowth PSF inside concessions. OUTSIDE
denotes future emissions due to conversion of mature/primary and secondary/regrowth PSF outside of concessions, moratorium, and protected
areas. Emission scenarios are outlined in the supplementary methods (Table S8)
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2017b). Collectively, the Peat Restoration Agency and the current

policy and legislative framework could provide a route to meaning-

fully stem regional PSF loss and emissions and comply with regional

emission‐reduction commitments buoyed by the recent global

COP21 Paris Accord. Achieving the policy and legislative goals will,

however, require enhanced long‐term financing and commitment to

the science, the means, and the politics of peatland restoration and

alternative agriculture.
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